ЦЛД. Система управления приводами электроэрозионных станков Mitsubishi ElectricДобавлено: 25.04.2014, Изменено: 23.11.2024 Цилиндрический линейный двигатель – это выигрышное решение. В 2010 году электроэрозионные станки Mitsubishi
По сравнению с ШВП они имеют значительно больший запас долговечности и надежности, с более высокой точностью способны осуществлять позиционирование, а также имеют лучшие динамические характеристики. У прочих конфигураций линейных двигателей ЦЛД выигрывают за счет общей оптимизации конструкции: меньшего тепловыделения, более высокой экономической эффективности, простоты монтажа, обслуживания и эксплуатации.
Учитывая все те преимущества, которые имеют ЦЛД, казалось бы, зачем еще мудрить с приводной частью оборудования? Тем не менее, не все так просто, и отдельное, обособленное, точечное усовершенствование никогда не будет столь же эффективным, как обновление всей системы взаимосвязанных элементов.
Поэтому применение цилиндрических линейных двигателей не осталось единственной инновацией, реализованной в приводной системе электроэрозионных станков Mitsubishi Electric. Одним из ключевых преобразований, позволившим в полной мере использовать преимущества и потенциал ЦЛД для достижения уникальных показателей точности и производительности оборудования, была полная модернизация системы управления приводами. И, в отличие от собственно двигателя, здесь уже настало время для реализации собственных разработок.
Ключевой особенностью сервоусилителей Mitsubishi семейства MelServo J3 является возможность осуществления коммуникаций по протоколу SSCNETIII: связь двигателей, датчиков обратной связи через усилители с системой ЧПУ происходит по оптоволоконным каналам связи.
При этом почти в 10 раз (по сравнению с системами предыдущих поколений станков) увеличивается скорость обмена данными: с 5,6 Мбит/с до 50 Мбит/с.
За счет этого длительность цикла информационного обмена сокращается в 4 раза: с 1,77мс до 0,44мс. Таким образом, контроль текущего положения, выдача корректирующих сигналов происходит в 4 раза чаще – до 2270 раз в секунду! Поэтому перемещение происходит более плавно, а его траектория максимально приближена к заданной (это особенно актуально при движении по сложным криволинейным траекториям).
Кроме того, применение оптоволоконных кабелей и сервоусилителей, работающих по протоколу SSCNETIII, позволяет значительно повысить помехозащищенность (см. рис.) и надежность обмена информацией. В том случае, если поступающий импульс содержит некорректную информацию (результат воздействия помех), то он не будет отработан двигателем, вместо этого будут использованы данные следующего импульса. Так как общее количество импульсов в 4 раза больше, такой пропуск одного из них минимально влияет на точность перемещения.
В итоге новая система управления приводом, благодаря применению сервоусилителей третьего поколения и оптоволоконных каналов связи, обеспечивает более надежный и в 4 раза более быстрый обмен данными, что делает возможным осуществление максимально точного позиционирования. Но на практике данные преимущества не всегда оказываются полезными, так как сам объект управления – двигатель, в силу своих динамических характеристик оказывается не способен отрабатывать управляющие импульсы такой частоты.
Однако преимущества, которые получает электроэрозионный станок, оснащенный системой ODS, не ограничиваются исключительно повышением точности позиционирования. Дело в том, что получение детали с определенной точностью и шероховатостью на электроэрозионном станке достигается при перемещении электрода (проволоки) с определенной скоростью вдоль траектории и при наличии определенного напряжения и расстояния между электродами (проволокой и заготовкой). Величины подачи, напряжения и межэлектродного расстояния строго определены для каждого материала, высоты обработки и желаемой шероховатости. Тем не менее, условия обработки не являются строго определенными, как не является однородным и материал заготовки, поэтому для получения годной детали с заданными характеристиками необходимо, чтобы в каждый конкретный момент времени параметры обработки изменялись согласованно с изменениями условий обработки. Это особенно важно, когда речь идет о получении микронных точностей и высоких показателей шероховатости. А также крайне необходимо для обеспечения стабильности процесса (проволока не должна рваться, не должно быть значительных скачков по величине скорости перемещения).
Данная задача решается при помощи адаптивного контроля. Станок самостоятельно подстраивается под изменяющиеся условия обработки, меняя величину подачи и напряжение. От того, насколько оперативно и корректно вносятся эти поправки, зависит то, насколько точно и быстро получится обрабатываемая деталь. Таким образом, качество работы адаптивного контроля в определенной степени задает и качество самого станка через его точность и производительность. И здесь-то как раз и проявляются в полной мере преимущества использования ЦЛД и системы ODS в целом. Способность ODS обеспечивать отработку управляющих импульсов с высочайшей частотой и точностью позволило на порядок повысить качество адаптивного контроля. Теперь параметры обработки корректируются до 4 раз чаще, притом, выше и общая точность позиционирования.
Подводя некоторые итоги, можно сказать, что применение ЦЛД « Назад
|
Для регистрации на сайте необходимо разрешить использование Cookies
|